Optimal Design When Outcome Values Are Not Missing at Random
نویسندگان
چکیده
The presence of missing values complicates statistical analyses. In design of experiments, missing values are particularly problematic when constructing optimal designs, as it is not known which values are missing at the design stage. When data are missing at random it is possible to incorporate this information into the optimality criterion that is used to find designs; Imhof, Song, and Wong (2002) develop such a framework. However, when data are not missing at random this framework can lead to inefficient designs. We investigate and address the specific challenges that not missing at random values present when finding optimal designs for linear regression models. We show that the optimality criteria depend on model parameters that traditionally do not affect the design, such as regression coefficients and the residual variance. We also develop a framework that improves efficiency of designs over those found when values are
منابع مشابه
Economic Statistical Design of Multivariate T^2 Control Chart with Variable Sample Sizes
Today, quality improvement and cost reduction are key factors for achieving business success, growth and position. One of the primary tools for quality improvement and cost reduction in online activities of statistical process control is control charts. As the need for monitoring several correlated quality characteristics is extensively growing, the use of multivariate control charts become...
متن کاملOutcome-sensitive multiple imputation: a simulation study
BACKGROUND Multiple imputation is frequently used to deal with missing data in healthcare research. Although it is known that the outcome should be included in the imputation model when imputing missing covariate values, it is not known whether it should be imputed. Similarly no clear recommendations exist on: the utility of incorporating a secondary outcome, if available, in the imputation mod...
متن کاملThe potential of the multivariate multilevel model for analysing correlated multiple outcomes: a simulation study
In clinical trials, multiple primary outcomes are often needed to assess the effectiveness of an intervention as a single primary outcome can be insufficient to describe all aspects of a complex disorder. These outcomes are often correlated. Many procedures for addressing multiple outcomes have been introduced; however, most of the commonly used methods do not make use of the correlations among...
متن کاملTransparent reporting of missing outcome data in clinical trials: applying the general principles of CONSORT 2010.
In clinical trials, missing outcome data can be problematic, potentially introducing bias and affecting internal and external study validity. These concerns are not new. Multiple guidelines for investigators emphasise the importance of first minimising the causes of missing data, such as loss to follow-up, and then using appropriate statistical strategies to account for missing values. 8–11 In ...
متن کاملA nonparametric multiple imputation approach for missing categorical data
BACKGROUND Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. METHODS We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each catego...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017